+
 1-4 Circles in the Coordinate Plane

TEKS FOCUS

TEKS (12)(E) Show that the equation of a circle with center at the origin and radius r is $x^{2}+y^{2}=r^{2}$ and determine the equation for the graph of a circle with radius r and center $(h, k),(x-h)^{2}+(y-k)^{2}=r^{2}$.

TEKS (1)(D) Communicate mathematical ideas, reasoning, and their implications using multiple representations, including symbols, diagrams, graphs, and language as appropriate.

Additional TEKS (1)(G), (2)(B)

VOCABULARY

- Standard form of the equation of a circle - The standard form of an equation of a circle with center (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$.
- Implication - a conclusion that follows from previously stated ideas or reasoning without being explicitly stated
- Representation - a way to display or describe information. You can use a representation to present mathematical ideas and data.

ESSENTIAL UNDERSTANDING

The information in the equation of a circle allows you to graph the circle.
Also, you can write the equation of a circle if you know its center and radius.

Key Concept Equation of a Circle

An equation of a circle with center (h, k) and radius r is $(x-h)^{2}+(y-k)^{2}=r^{2}$.

This is the standard form of the equation of a circle.

Problem 1

Think

What do you need to know to write the equation of any circle whose center is ($\mathbf{0}, \mathbf{0}$)? You need to know the length of the radius or the coordinates of any point on the circle.

Deriving the Equation of a Circle Centered at the Origin

What is the standard form of an equation of a circle with center $(0,0)$?
Use the Distance Formula to find an equation of a circle with center $(0,0)$ and radius r. Let (x, y) be any point on the circle. Then the radius r is the distance from $(0,0)$ to (x, y).

$$
\begin{aligned}
d & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} \\
r & =\sqrt{(x-0)^{2}+(y-0)^{2}} \\
r & =\sqrt{x^{2}+y^{2}} \\
r^{2} & =x^{2}+y^{2}
\end{aligned}
$$

Distance Formula
Substitute r for $d,(0,0)$ for $\left(x_{1}, y_{1}\right)$, and (x, y) for $\left(x_{2}, y_{2}\right)$. Simplify. Square both sides

The equation of a circle with radius r and center $(0,0)$ is $x^{2}+y^{2}=r^{2}$.

Problem 2

TEKS Process Standard (1)(G)

Think

How is this different from Problem 1? You still find the distance between the center of the circle and a point on the circle. The difference is the center is (h, k) instead of (0,0).

Deriving the Equation of a Circle Centered at (h, k)

What is the standard form of an equation of a circle with center (h, k) ?
Use the Distance Formula to find an equation of a circle with center (h, k) and radius r. Let (x, y) be any point on the circle. Then the radius r is the distance from (h, k) to (x, y).

$$
\begin{aligned}
d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & \text { Distance Formula } \\
r=\sqrt{(x-h)^{2}+(y-k)^{2}} & \begin{array}{l}
\text { Substitute } r \text { for } d,(x, y) \text { for }\left(x_{2}, y_{2}\right), \\
\text { and }(h, k) \text { for }\left(x_{1}, y_{1}\right) .
\end{array} \\
r^{2}=(x-h)^{2}+(y-k)^{2} & \text { Square both sides. }
\end{aligned}
$$

The equation of a circle with radius r and center (h, k) is $(x-h)^{2}+(y-k)^{2}=r^{2}$.

Problem 3

Writing the Equation of a Circle

Plan

What do you need to know to write the equation of a circle? You need to know the values of h, k, and r; h is the x-coordinate of the center, k is the y-coordinate of the center, and r is the radius.

What is the standard equation of the circle with center $(5,-2)$ and radius 7 ?

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =r^{2} & & \text { Use the standard form of an equation of a circle. } \\
(x-5)^{2}+[y-(-2)]^{2} & =7^{2} & & \text { Substitute }(5,-2) \text { for }(h, k) \text { and } 7 \text { for } r . \\
(x-5)^{2}+(y+2)^{2} & =49 & & \text { Simplify. }
\end{aligned}
$$

Problem 4

Think

How is this problem different from Problem 3?
In this problem, you don't know r. So the first step is to find r.

Using the Center and a Point on a Circle

What is the standard equation of the circle with center $(1,-3)$ that passes through the point $(2,2)$?

Step 1 Use the Distance Formula to find the radius.

$$
\begin{aligned}
r & =\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}} & & \text { Use the Distance Formula. } \\
& =\sqrt{(1-2)^{2}+(-3-2)^{2}} & & \begin{array}{l}
\text { Substitute }(1,-3) \text { for } \\
\left(x_{2}, y_{2}\right) \text { and }(2,2) \text { for }\left(x_{1}, y_{1}\right) .
\end{array} \\
& =\sqrt{(-1)^{2}+(-5)^{2}} & & \\
& =\sqrt{26} & &
\end{aligned}
$$

Step 2 Use the radius and the center to write an equation.

$$
\begin{aligned}
(x-h)^{2}+(y-k)^{2} & =r^{2} & & \text { Use the standard form of an equation of a circle. } \\
(x-1)^{2}+[y-(-3)]^{2} & =(\sqrt{26})^{2} & & \text { Substitute }(1,-3) \text { for }(h, k) \text { and } \sqrt{26} \text { for } r . \\
(x-1)^{2}+(y+3)^{2} & =26 & & \text { Simplify. }
\end{aligned}
$$

Problem 5

Graphing a Circle Given Its Equation STEM

Communications When you make a call on a cell phone, a tower receives and transmits the call. A way to monitor the range of a cell tower system is to use equations of circles. Suppose the equation $(x-7)^{2}+(y+2)^{2}=64$ represents the position and the transmission range of a cell tower. What is the graph that shows the position and range of the tower?

$$
\begin{array}{rl}
(x-7)^{2}+(y+2)^{2} & =64 \\
(x-7)^{2}+[y-(\underbrace{-2)}_{\uparrow}]^{2} & =8^{2} \\
\uparrow & \uparrow \\
\boldsymbol{h} & \boldsymbol{k}
\end{array}
$$

Use the standard equation of a circle.
Rewrite to find h, k, and r.

The center is $(7,-2)$ and the radius is 8 .
To graph the circle, place the compass point at the center $(7,-2)$ and draw a circle with radius 8.

For additional support when completing your homework, go to PearsonTEXAS.com.

Write the standard equation of each circle.

1. center $(2,-8) ; r=9$
2. center (0,3); $r=7$
3. center ($0.2,1.1$); $r=0.4$
4. center (0,0); $r=4$
5. center $(-6,3) ; r=8$
6. center $(-9,-4) ; r=\sqrt{5}$

Find the center and radius of each circle. Then graph the circle.
7. $(x+7)^{2}+(y-5)^{2}=16$
8. $(x-3)^{2}+(y+8)^{2}=100$

Write a standard equation for each circle in the diagram at the right.
9. $\odot P$
10. $\odot Q$

Write the standard equation of the circle with the given center that passes through the given point.
11. center $(-2,6)$; point $(-2,10)$
12. center $(1,2)$; point $(0,6)$
13. center $(7,-2)$; point $(1,-6)$
14. center $(-10,-5)$; point $(-5,5)$

Apply Mathematics (1)(A) Each equation models the position and range of a tornado alert siren. Describe the position and range of each.
15. $(x-5)^{2}+(y-7)^{2}=81$
16. $(x+4)^{2}+(y-9)^{2}=144$

Write the standard equation of each circle.
17.

18.

19.

Write an equation of a circle with diameter $\overline{A B}$.
20. $A(0,0), B(8,6)$
21. $A(3,0), B(7,6)$
22. $A(1,1), B(5,5)$

Determine whether each equation is the equation of a circle. Justify your answer.
23. $x+(y-3)^{2}=9$
24. $x+y=9$
25. $(x-1)^{2}+(y+2)^{2}=9$
26. Analyze Mathematical Relationships (1)(F) Find the circumference and area of the circle whose equation is $(x-9)^{2}+(y-3)^{2}=64$. Leave your answers in terms of π.
27. Explain Mathematical Ideas (1)(G) Describe the graph of $x^{2}+y^{2}=r^{2}$ when $r=0$.
28. The equations $(x+6)^{2}+(y+5)^{2}=9$ and $(x+6)^{2}+(y+5)^{2}=81$ represent two circles. Describe the relationship of the graphs.
29. The point $(2,3)$ lies on a circle whose center is $(6,-1)$. What is the radius of the circle?

Sketch the graphs of each equation. Find all points of intersection of each pair

 of graphs.30. $x^{2}+y^{2}=13$
$y=-x+5$
31. $x^{2}+y^{2}=8$
$y=2$
32. $(x-2)^{2}+(y-2)^{2}=10$
$y=-\frac{1}{3} x+6$
33. Justify Mathematical Arguments (1)(G) Derive the equation of a circle centered at $(0,0)$. Use the Distance Formula.
34. The concentric circles $(x-3)^{2}+(y-5)^{2}=64$ and $(x-3)^{2}+(y-5)^{2}=25$ form a ring. The lines $y=\frac{2}{3} x+3$ and $y=5$ intersect the ring, making four sections. Find the area of each section. Round your answers to the nearest tenth of a square unit.
35. Use Multiple Representations to Communicate Mathematical Ideas (1)(D) The equation of a sphere is similar to the equation of a circle. The equation of a sphere with center (h, j, k) and radius r is $(x-h)^{2}+(y-j)^{2}+(z-k)^{2}=r^{2}$. In the diagram at the right, $M(-1,3,2)$ is the center of a sphere passing through the point T such that the radius of the sphere is $\sqrt{6}$. What is the equation of the sphere?
36. Apply Mathematics (1)(A) A close estimate of the radius of Earth's
 equator is 3960 mi .
a. Write the equation of the equator with the center of Earth as the origin.
b. Find the length of a 1° arc on the equator to the nearest tenth of a mile.
c. Columbus planned his trip to the East by going west. He thought each 1° arc was 45 mi long. He estimated that the trip would take 21 days. Use your answer to part (b) to find a better estimate.

TEXAS Test Practice

37. What is an equation of a circle with radius 16 and center $(2,-5)$?
A. $(x-2)^{2}+(y+5)^{2}=16$
B. $(x+2)^{2}+(y-5)^{2}=4$
C. $(x+2)^{2}+(y-5)^{2}=256$
D. $(x-2)^{2}+(y+5)^{2}=256$
38. What can you NOT conclude from the diagram at the right?
F. $e<a$
G. $c^{2}+e^{2}=b^{2}$
H. $a=b$
J. $e=d$
39. Are the following statements equivalent?

- In a circle, if two central angles are congruent, then they have congruent arcs.
- In a circle, if two arcs are congruent, then they have congruent central angles.

